Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction
نویسندگان
چکیده
Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.
منابع مشابه
Hippo signaling impedes adult heart regeneration.
Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferat...
متن کاملStimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction
Controversy surrounds the identity, origin, and physiologic role of endogenous cardiomyocyte progenitors in adult mammals. Using an inducible genetic labeling approach to identify small non-myocyte cells expressing cardiac markers, we find that activated endogenous cardioblasts are rarely evident in the normal adult mouse heart. However, myocardial infarction results in significant cardioblast ...
متن کاملIntra-Myocardial Injection of Both Growth Factors and Heart Derived Sca-1+/CD31− Cells Attenuates Post-MI LV Remodeling More Than Does Cell Transplantation Alone: Neither Intervention Enhances Functionally Significant Cardiomyocyte Regeneration
Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear ...
متن کاملNeuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury
Many organs rely on undifferentiated stem and progenitor cells for tissue regeneration. Whether differentiated cells themselves can contribute to cell replacement and tissue regeneration is a controversial question. Here, we show that differentiated heart muscle cells, cardiomyocytes, can be induced to proliferate and regenerate. We identify an underlying molecular mechanism for controlling thi...
متن کاملCardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart
Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-ter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016